

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
1

PRIORITIZE REGRESSION TEST CASES

1Avinash Gupta, 2Dharmender Singh Kushwaha
1,2MNNIT Allahabad

Email:1avinashg.mnnit@gmail.com,2dsk@mnnit.ac.in

Abstract—Test suites can be reduced to a
smaller suite that guarantees equivalent
coverage, termed as test suite minimization.
Test case prioritization techniques prioritize
and schedule test cases in an order that
attempts to maximize some desired objective
like achieving code coverage at the fastest rate
in order to minimize the regression testing.
The proposed approach is computationally
simple requiring lesser number of
computations. It also identifies and eliminates
those program statements that have been
tested in the previous test sessions. This
achieves complete regression testing in fewer
numbers of sessions.

I. INTRODUCTION & RELATED WORK

Regression testing is the practice of running an
old test suite after each change to the system or
after each bug fix to ensure that no new bug has
been introduced due to the change or the bug fix
[1, 2, and 6]. However, as software evolves, the
test suite tends to become enormous, thus posing
constraints to execute the entire test suite [7].
This limitation leads to the need of techniques
that reduces the effort required for regression
testing. Three different techniques have therefore
been proposed for test suite reduction. These are
prioritization, selection, minimization of test
suite.
A test suite minimization lowers the cost by
reducing a test suite to a minimal subset that
maintains equivalent coverage of original set
with respect to particular test adequacy criterion
[8].
As mentioned by S. Yoo, M. Harman [10], test

case selection, or the regression test selection
problem, is essentially similar to the test suite
minimization problem: both problems are about
choosing a subset of test cases from the test suite.
 Test case prioritization is the process of
scheduling test cases in an order to meet some
performance goal [9]. The test suite may contain
test cases on higher priority which may not be
able to detect the errors [3]. Hence, several
techniques have been proposed for prioritizing
the existing test cases to accelerate the rate of
fault detection in regression testing. Some of
these approaches are Coverage-based
Prioritization [9], Interaction Testing,
Distribution-based Approach [5], Requirement-
based Approach, and the Probabilistic Approach
[4]. All these approaches apart from probabilistic
approach referred above consider prioritization
as an unordered, independent and one-time
model. They do not take into account the
performance of test cases in the previous
regression test sessions, such as the number of
times a test case revealed faults [10]. History
Based Approach (HBA) has been applied to
increase the fault detection ability of the test
suite. Kim and Porter [4] considered the problem
of prioritization of test cases as a probabilistic
approach and defined the history-based test case
prioritization. Khalilian et al. [3] proposed an
extension of history-based prioritization
proposed in [4], and modifies the equation given
by Kim and Porter [4], to have dynamic
coefficients. The priority is calculated using the
mathematical equation by computing the
coefficients of the equation from the historical
performance data. Avinash et al. [11] extends the

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
2

approach proposed by Khalilian et al. in [3] by
prioritizing the modified lines.

In this paper, we propose a new approach which
is an extension of the Avinash et al. [11]. Unlike
in [11], require extensive computation of
parameters, the proposed approach requires less
number of computations.
 The rest of the paper is organized as follows. In
Section 2, we present the proposed approach and
implementation. Section 3 describes
performance analysis and comparison results.
We conclude the paper and discuss future work
in Section 4.

II. PROPOSED APPROACH &

IMPLEMENTATION

The proposed approach – prioritize regression
test cases, although an extension of the history
based approach presented in [3, 11], applies a
new set of prioritization equations that
maximizes the execution of yet to be executed
test case and eliminates already executed test
cases. In contrast to the existing approaches, the
proposed approach applies the prioritization
equation on each modified line of the code as
against each test case. The proposed approach
also ensures that those test cases are selected for
each modified line such that the test case has the
maximum coverage among all the test cases
which contain the modified line of code.

 Our proposed approach has been implemented
in a ‘C’ program and the history is being stored
in text format in text files. The history contains
all the test cases and parameters such as number
of executions of test case, number of times fault
detected by test case, number of times each line
has been delayed execution. The test cases
contain the number of all the lines traversed
along the line of execution of the test case. The
parameters have been stored in the form of
arrays, where each index represents a line in the
code. The proposed approach in this paper
includes the steps shown in Figure 1.

Figure 1: Flow chart of proposed algorithm

Step1: Extract History From Database
In this phase the following parameter values of
the previous session are extracted from the
database:-
hk[]=0 if test case has been executed for a
statement in test session k-1, otherwise set to (hk-

1 + 1).
mod_locode[] = an index is set to 1 if the
corresponding line has been modified else to 0.
del_locode[] = an index is set to 1 if the
corresponding line has been deleted else to 0.
PRk-1[] = the value at an index indicates the
priority value of the corresponding line in last
session.
PRk[] = the value at an index indicates the
priority value of the corresponding line in
present session.

Step2: Input Modified Lines
The modified lines are taken as input from the
user through a well defined interface of the
program. Any new test cases are also entered
through this interface.

Step3: Find max coverage and max coverage
test case
If the modified line say, mi is present in a testcase
Ti , then
max coverage of line mi = max (no. of lines in Ti
/total number of lines) * 100
for all Ti in which mi is found.
Ti is the max coverage test case for mi, if Ti has
max code coverage.
Step4: Calculate Priority Value for Modified
Value

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
3

For each modified line, the priority value is
calculated using Eq. (1)[11].

 PRk = (α.hk + β.PRk-1)/k (1)
In the proposed approach, value of β is initialized
as 1 in the 1st session and for subsequent
sessions; it is set to 0 for fault detected or 1
otherwise. Likewise value of ‘α’ is initially set
to 1 and is increased by 0.2 in subsequent
sessions.
In Eq. (1), hk is the test cases execution history.
In Eq. (1), PR0 is defined for each test case as the
percentage of code coverage of the test case. The
presence of PR0 will be helpful in refining the
ordering of the test cases in the first session.

Step 5: Prioritize Modified Lines
Modified lines are prioritized by their
corresponding PRk, in descending order. If the
modified lines m1, m2 and m3 have PRk values
as -
PRk [m1] = 10.56, PRk [m2] = 54.56, PRk [m3] =
9.64
Hence ordering would be -
m2, m1 , m3.

Step 6: Prioritize Test cases in order of
modified lines
Max coverage test case for, say
m1 = T2, m2 = T1, m3 = T3
Hence ordering of test cases in order of the
respective modified line m2, m1 and m3 would
be - T1, T2, T3.

Step 7: Output prioritized the test cases
The final output for session k is T1, T2, T3.
 After prioritizing, the test cases are executed.
Let us assume that only 40% of all the test cases
prioritized are able to get executed. Out of all the
test cases executed, there are certain test cases
which detect fault, and after debugging a fault is
detected. Then, the parameters are updated in the
following manner-
• hk = 0 if test case has been executed for a

statement in test session k-1, otherwise set to
(hk-1 + 1).

• Value of β is set to 0 for fault detected or 1
otherwise.

• Value of ‘α’ is increased by 0.2 in subsequent
sessions.

• Eliminate the statements where faults are
detected.

• Select 40% from the reduced set of test cases.
The database is updated with all these
modifications.

Case Study:
The proposed approach is demonstrated with an
example here. We are considering a small ‘C’
program as shown in Figure 2 and its modified
version in Figure 3. The program in Figure 2
calculates the value of mathematical equations.
The equation consists of variables x and y whose
value depends on the value of a, b, c, d and e.

Figure 2: Sample Program Figure 3: Modified Sample Program

The program in Figure 3 is modified at line
numbers 8, 26, 30, 35 and 40. The modified lines
are each shown with a dark underline in Figure
3. The changes in each of the modified lines are
shown in Table 1. These modifications in the
program will introduce divide by zero error in the
program.

Table 1: Changes in the Sample program

Line no. Original line
Modified

line
8 a>0 a<0
26 (1/(b+2)) (1/(b-1))
30 (1/(x+4)) (1/(x-4))
35 (1/(x+5)) (1/(x-5))
40 (1/(x+5)) (1/(x-5))

The Control Flow Graph (CFG) for the sample
program and the modified sample program is
same because in Figure 3, neither the branch
condition has changed nor has a new line been
added. Based on branch coverage, we have the
following test cases:
T1 - 8 9 10 11 20 38 39 40 41 42 43
T2 - 8 12 13 14 15 17 18 19 20 21 22 33 34 35
36 37 42 43
T3 - 8 12 13 14 15 16 19 20 21 22 23 24 25 26
27 42 43

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
4

T4 - 8 12 13 14 15 17 18 19 20 21 22 23 24 25
26 27 42 43
T5 - 8 9 10 11 38 39 40 41 42 43
T6 - 8 12 13 14 15 16 19 38 39 40 41 42 43
T7 - 8 12 13 14 17 18 19 20 21 22 23 28 29 30
31 32 37 42
These test cases are kept in the ’testcases.txt’ file.
Now, for session k=1:
Step 1: Extract history from database
For each modified line, the value of parameters,
namely hk, PRk and PRk-1 is set to 0 as shown in
the table. PRk-1 is test case priority in current
session. PRk is test case priority in next session.
Step 2: Input line numbers of modified lines
As is mentioned in Figure 3, the line numbers of
modified lines are 8, 26, 30, 35 and 40. The line
numbers of modified lines are entered into the
program via the input interface of the program.
Step 3: Find max coverage and max coverage
test case
Since, Code coverage of a test case T= (no. of
lines in the test case / total number of lines in the
program)* 100
Hence, max code coverage for line 26= 36%
Since, Test case T4 is having the max code
coverage value of 36 among all the test cases
containing the line 26
So, max code coverage test case for line 26 = T4
Similarly max code coverage test case for line
number 8, 30, 35 and 40. The results are:
Max code coverage test case for line 8 = T2,
and max code coverage = (18 / 50) * 100 = 36%
Max code coverage test case for line 30 = T7,
and max code coverage = (18 / 50) * 100 = 36%
Max code coverage test case for line 35 = T2,
and max code coverage = (18 / 50) * 100 = 36%
Max code coverage test case for line 40 = T6,
and max code coverage = (13 / 50) * 100 = 26%
Step 4: Calculate priority values for modified
lines
For session k=1, the status of all the parameters
is as shown in the Table 2.

Table 2: Status of parameters before session
k=1

Line
No.

hk PR
k

PRk-

1
8 0 0 36
26 0 0 36
30 0 0 36
35 0 0 36
40 0 0 26

 Now, Substituting the values of hk, α=0, β=1 and
PRk-1 in Eq. (1) from Table 2, to calculate the
corresponding value of PRk for lines 8, 26, 30, 35
and 40. We get: PRk [8] = 36, PRk [26] = 36, PRk
[30] = 36, PRk [35] = 36, PRk [40] = 26.
Step 5: Prioritize the modified lines in order
of priority value
Based on the priority values calculated in step 4,
modified lines in order of priority as per PRk
values are: 8, 26, 30, 35, 40.
Step 6: Prioritize the test cases in order of
modified lines
Max code coverage test case for Line 8 is T2,
Line 26 is T4, Line 30 is T7, Line 35 is T2, Line
40 is T6, So ordering the test cases in the same
order as their respective modified lines are, we
get:T2, T4, T7, T2, T6. Removing the repeated
test case T2 from the fourth place, we get T2, T4,
T7, T6.
Step 7: Output prioritized the test cases
The final output for session k=1 is T2, T4, T7,
T6.
After the end of session 1, 40% of all the test
cases are executed i.e. test cases T2, T4, T7 are
executed in the order of priority as given by the
final output of session 1. After the execution of
the test cases it is found that all the test cases fail
i.e. detect faults.
T2 detects fault at statement 8 and 35, T4 at 8 and
26 and finally T7 detects fault at statement 30.

Session 2: (For session k=2)
It is evident that fault at statement 40 is yet not
detected. Eliminating the statements where fault
have been detected in session 1 from the set of
statement number 8,26,30, 35 and 40 leaves only
statement 40. Hence, one has to initiate the next
session. The values of the various parameters for
these sessions are illustrated in the Table 3.

Table 3: Status of parameters before session
k=2

Line
No.

hk PR
k

PRk-

1
40 1 0 26

In Table 3, the values for PRk in session k=1
become the respective values of PRk-1 in session
k=2 for each line. Since, max code coverage test
case for line number 40 i.e. T6 did not execute in
session 1, the value of hk for line 40 is increased
from 0 to 1 before the start of session 2.
Similarly, the value of ‘β’ is set to 1 and the value
of ‘α’ is increased by 0.2. Eliminate the

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
5

statements where faults are detected. Hence, we
now proceed as we did in session k=1.

 Now, Substituting the values of hk=1, α=1.2,
β=1 and PRk-1=26 in Eq. (1), we get PRk [40] =
13. Based on the priority values calculated in
step 4, modified lines in order of priority as per
PRk values are: 40. Since, Max code coverage
test case for Line 40 is T6. Therefore final output
for session k=2 is T6.

 Test case covering statement 40 i.e. T6 is
executed and all the faulty statements of the code
have been found in the second session itself.
Thus the proposed approach is able to detect all
the faults in two sessions as compared to 3
sessions required by approaches proposed in [11]
and [3].

III. PERFORMANCE ANALYSIS:

Proposed approach is illustrated by three
programs of Java, C and C++ based platforms.
The references of which are given in Table 5.

Table 5: Project References
Progra

m
LO
C

Pla
tfor
m

URL/Journals

Branch
Covera
ge
Sample
Progra
m

50 Jav
a

An improved method
for test case
prioritization by
incorporating
historical test case
data [11]

Bank
Accou
nt

52 Jav
a

Automated
Behavioural Based
Regression Testing
[10]

Payroll
Manag
ment
System

30
0

C+
+

http://www.software
andfinance.com/foru
ms/index.php?topic=
407.0

The proposed approach is compared with the one
proposed by Khalilian et al. [3] and Avinash et
al. [11] by applying both the prioritization
mechanisms on the programs listed in Table 5.
Five faults were seeded in each of the programs.
Multiple sessions of regression test were
followed by the proposed approach as well as by
Khalilian et al. [3] and Avinash et al. [11]
approaches.

Table 6: Proposed Approach Results

Program

Line
No.

Modifi
ed

Ses
sion
No.

Faulty
Lines
Detect
ed by

Avinas
h et al.

[11]
Appro

ach

Faulty
Lines

Detecte
d by

Khalilia
n et al.

[3]
Approac

h

Faulty
Lines
Detect
ed by
the

Propos
ed

Appro
ach

Branch
coverage
sample

program

8,
26,30
, 35,
40

S1
26, 30,

35
26, 30

8,26,3
0,35

S2
No

Faults
Found

35, 40 40

S3 40, 8

Bank
Account

6,17,2
2,

24,27

S1
17,

22,24,
27

17, 22,
24, 27

17,
22,24,

27

S2
No

Faults
Found

No
Faults
Found

6

S3 6 6

Payroll
Managem

ent
System

70,118
, 124,
207,23

1

S1

124,
118,
231,
207

124,
118, 231

124,
118,
231,
207

S2 70 70 70
S3 207

Results in Table 6 shows the faults detected in
each session by the 3 approaches. This is
followed by a comparison of the total number of
sessions required to find all the faults in the
proposed approach as compared to Khalilian et
al. [3] and Avinash et al. [11] approaches as
illustrated in Table 7.
After analysing the results, it is found that the
number of faults detected in program segments
per session is more than or equal to for the
proposed approach than the other 2 approaches.
At the same time the number of sessions required
to discover all faults in the proposed approach is
always lesser as illustrated in figure 3.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
6

Table 7: Comparison of the Proposed Approach
with Avinash and Khalilian Approach

Projects

No. of
sessio
ns
requir
ed in
Avina
sh et
al.
[11]
Appro
ach

No. of
sessio
ns
requir
ed in
Khalil
ian et
al. [3]
Appro
ach

No.
of
sessi
ons
requi
red
in
the
Prop
osed
Appr
oach

Branch
Coverage
Sample
Program

3 2 2

Bank Account 3 3 2
Payroll
Management
System

2 3 2

Figure 3: Comparison Chart of Proposed
approach

IV. Conclusion & Future Work

The proposed approach for prioritization and
reduction of test cases for regression testing is
computationally simple requiring lesser number
of computations. It also identifies those program
statements that have been tested in the previous
test sessions, that are eliminated from the set of
statements over which test cases need to be run.
After analysing the results, it is found that the
number of faults detected in program segments
per session is more than or equal to for the
proposed approach than the other approaches.
The proposed approach consumes at least 33%
lesser test sessions as compared to other existing
approaches. It is noteworthy that the proposed

approach requires execution of just 1 equation as
compared to 3 by the other two approaches for
prioritization.
In future work, we may consider other factors
such as severity of fault detected, which may
help to refine the process of prioritization. The
program for the proposed algorithm takes line
number of modified lines as input manually.
Experiments may be done on more programs to
analyse the results in different perspective.

References

[1] H.-Y. Hsu and A. Orso. Mints: A general

framework and tool for supporting testsuite
minimization. In Software Engineering,
2009. ICSE 2009. IEEE 31st International
Conference on, pages 419–429. IEEE, 2009.

[2] W. Jin, A. Orso, and T. Xie. Automated
behavioral regression testing. In Software
Testing, Verification and Validation (ICST),
2010 Third International Conference on,
pages 137–146. IEEE, 2010.

[3] A. Khalilian, M. Abdollahi Azgomi, and Y.
Fazlalizadeh. An improved method for test
case prioritization by incorporating historical
test case data. Elsevier Science of Computer
Programming, 78(1):93–116, 2012.

[4] J.-M. Kim and A. Porter. A history-based test
prioritization technique for regression testing
in resource constrained environments. In
Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International
Conference on, pages 119–129. IEEE, 2002.

[5] D. Leon and A. Podgurski. A comparison of
coverage-based and distribution-based
techniques for filtering and prioritizing test
cases. In Software Reliability Engineering,
2003. ISSRE 2003. 14th International
Symposium on, pages 442–453. IEEE, 2003.

[6] R. Mall. Fundamentals of software
engineering. PHI Learning Pvt. Ltd., 2009.

[7] A. J. Offutt, J. Pan, and J. M. Voas.
Procedures for reducing the size of coverage
based test sets. In In Proc. Twelfth Int’l.
Conf. Testing Computer Softw. Citeseer,
1995.

[8] G. Rothermel, M. J. Harrold, J. Ostrin, and
C. Hong. An empirical study of the effects of
minimization on the fault detection
capabilities of test suites. In Software
Maintenance, 1998. Proceedings.
International Conference on, pages 34–43.
IEEE, 1998.

0

1

2

3

4

1 2 3

N
u

m
b

er
 o

f
T

es
t

S
es

si
on

s

Programs

Avinash et al. [11]
Approach

Alireza et al. [3]
Approach

Proposed Approach

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
7

[9] G. Rothermel, R. H. Untch, C. Chu, and M.
J. Harrold. Prioritizing test cases for
regression testing. Software Engineering,
IEEE Transactions on, 27(10):929–948,
2001.

[10] S. Yoo and M. Harman. Regression
testing minimization, selection and
prioritization: a survey. Software Testing,
Verification and Reliability, 22(2):67–120,
2012.

[11] Avinash Gupta, Nayaneesh Mishra,
Dushyant Kumar Singh and Dharmender
Singh Kushwaha, "Test Cases Reduction
through Prioritization Technique",
International conference on Advance in
Computing, Communication and Information
Technology, (CCIT-14), London, June, 01-
02, 2014.

